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On MMSE Real-Time Antenna Array
Processing Using Fourth-Order Statistics

in the U.S. Cellular TDMA System
Massimiliano (Max) Martone,Member, IEEE

Abstract—The antenna array processing problem in the reverse
link of the current U.S. digital cellular communication system is
studied and higher-than-second-order-statistics (HOS) baseband
processing is proposed as a possible candidate solution. The
remarkable difference of our approach as compared to other
existing similar techniques is the idea of the minimization of
the mean squared error using fourth-order cumulants alone and
nonblind criteria. A recursive Jacobi total least squares algorithm
is used in the adaptive implementation to mitigate the effects of
high error variance in the estimates of the cumulants based on
sample statistics. The method is shown to be very effective in a
fast fading environment with multiple cochannel interferers.

Index Terms—Array signal processing, higher order statistics,
interference suppression, land mobile radio cellular systems.

I. INTRODUCTION

I N WIDEBAND time division multiple access (TDMA)
systems, data dispersion can span several symbols as a

consequence of frequency selective fading caused by RF
multipath propagation. The received signal is composed of the
original plus several delayed replicas, and each replica reaches
the antenna with different attenuation and angle of arrival. In
addition, multiple cochannel interferers may be received at the
antenna afflicted by similar impairments. Since propagation
characteristics of the signal of interest and interference change
in time due to the motion of the transmitters, it is of paramount
importance to employ adequate real-time signal processing
at the base-station receiver of the cellular system in order
to maintain the highest signal quality. Space-only processing
methods [23] are not effective in such an environment because
intersymbol interference (ISI) cannot be compensated using
the traditional combining architecture. Space-time filtering
may result in a more efficient approach to mitigate multipath
fading and interference caused by multiple cochannel transmit-
ters. On the other hand, as a consequence of the continuous
decrease in the cost of digital hardware, there is today great
interest in those techniques that process digitized baseband
samples coming from different sensors of an antenna array.
One of the possible solutions to the problem is the application
of the minimum mean squared error (MMSE) principle [2],
which usually results in multichannel generalizations of single-
channel adaptive linear filtering algorithms. Unfortunately,
the MMSE method has limitations, despite its simplicity,
because second-order statistics (SOS) alone are processed

Manuscript received September 1, 1997; revised February 1, 1998.
The author is with the Watkins–Johnson Company, Telecommunications

Group, Gaithersburg, MD 20878-1794 USA (e-mail: max.martone@wj.com).
Publisher Item Identifier S 0733-8716(98)07891-3.

which imply the assumption that the underlying processes
are all Gaussian processes. Since in a real-world scenario
this assumption is rarely satisfied, the use of SOS results
in suboptimum performance. The use of higher-than-second-
order statistics (HOS) has generated great interest in the signal
processing community over the last ten years [8], [17], [19],
mainly because of the celebrated theoretical Gaussian rejection
property and enhanced identification capability. Most parts
of the works describing HOS-based algorithms for identi-
fication/deconvolution are blind and try not to exploit any
input signal knowledge. Many successful applications of HOS
were recently proposed in a multichannel setup [14]–[16].
However, since the estimation of HOS requires considerably
larger sample size than SOS, these blind algorithms result in
an intolerably slow convergence behavior that prevented their
applicability in practical systems. In TDMA systems (see,
for example, the IS-136 standard for U.S. cellular commu-
nications [21]), the bitstream (control data and voice data) is
organized into frames. Some known sequences are periodically
transmitted in every slot that allows the receiver to perform
frame synchronization, symbol timing recovery, and equalizer
training. The length of a slot including the training sequence
is usually in the range 100–200 symbols, depending on the
type of frame, while the length of the known sequence is in
the range 14–20 symbols. The use of the known sequence
is indispensable to fast start-up equalization. The method
proposed in this work is based on the same idea introduced in
[5] and [6] where high-order cumulants were used to derive
MMSE methods for system identification. Here we modify the
basic intuition so that it can be applied to the deconvolution
of complex vector signals. Moreover, we show that it is
indeed possible to derive a fully adaptive implementation
based on a recursive Jacobi-type algorithm. The paper is
organized as follows. In Section II, we describe the system
model for the propagation channel and the discrete-time model.
In Section III, the set of equations necessary to solve the
deconvolution problem is derived. In Section IV, the adaptive
implementation is described, while in Section V the result of
computer simulations and laboratory hardware experiments are
shown for IS-136 [21], the current digital standard for cellular
communications in the United States.

II. SYSTEM MODEL

A brief review of the system model is given in this
section. We assume mobile transmitters communicating
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with a base-station with a -element antenna array, with
. Each element of the antenna has a digital filter

with complex weights. The structure of
the antenna is assumed to be a uniform linear array,is
the distance between adjacent antenna elements,is the
wavelength of the signal. Multipath propagation for theth
mobile transmitter can be characterized as an-ray channel
whose th ray is represented by
received delayed and attenuated replicas of the signal. The
impulse response of theth ray relative to theth transmitter

can be expressed as ,
where , , and are delay, amplitude, and phase
of the th delayed signal in the th path relative to theth
transmitter, while is the delta function.1 Observe that
we are assuming for the derivation a time invariant channel,
while instead usually , , and are time varying
parameters. The assumption is justified in many applications
of interest, since the observation interval is often much shorter
than the coherence time of the channel which characterizes
the time-variant behavior of the propagation media. However,
the adaptive scheme described in Section IV is designed
for time-variant channels. The complex baseband modulated
signal of the th transmitter is ,
where are the complex symbols
defining the signal constellation used for the particular digital
modulation scheme,2 is a square root raised cosine
shaping filter with roll-off factor 0.35, and is the signaling
interval. The symbols are assumed to have predetermined
correlation properties. The model assumed for the generation
of the symbols is , where

is a finite impulse response (FIR) filter modeling
the autocorrelation of the complex sequence . The
statistical properties of are detailed later. Theth
transmitted signal propagated through theth path can
be represented as

where
is the carrier frequency. The contribution of theth

transmitted signal propagated through theth path with angle
of arrival (DOA) and phase difference
from the first antenna element to theth element can be
written (we are neglecting the additive noise) as

1In this model the�th ray for thelth transmitter consists ofP (l)
� delayed

replicas of the signal with the same angle of arrival due to the scatterers nearby
the mobile. In fact, assuming the scatterers evenly spread out on a circle
surrounding each mobile, and assuming large distance between the mobile
and the base station, simple geometric considerations [1] can lead to the
simplification of apoint-source approximationfor the scattering mechanism
local to the mobile, that is, we can assume thatP

(l)
� delayed replicas of the

signal are received with approximately the same angle of arrival. For a certain
numberN (l) of reflections of thelth transmitted signal, particularly reflections
in the vicinity of the base station, these assumptions are not reasonable, and
different angles of arrival have to be considered.

2In �=4 DQPSK [21] we have~a(l)m = ~a
(l)
m�1 cos[��

(l)
m ] � ~b

(l)
m�1sin

[��
(l)
m ], ~b(l)m = ~a

(l)
m�1sin[��

(l)
m ] + ~b

(l)
m�1cos[��

(l)
m ], where��

(l)
m = �=4

if bit(l)1;m = 0 andbit(l)2;m = 0, ��
(l)
m = 3�=4 if bit(l)1;m = 1 andbit(l)2;m

= 0, ��m = �3�=4 if bit1;m = 1 and bit2;m = 1, ��m = ��=4 if
bit1;m = 0 andbit2;m = 1.

where . Sampling at symbol
rate , we can compact the effect of the RF propagation
channels at the input of the digital filters at baseband as

(1)

where is Gaussian noise and

is the -sampled3 impulse response

. In this expression,
is the raised cosine function with excess bandwidth

0.35 obtained because we assume that the receiver filters
at each antenna element are square root raised cosine

filters perfectly matched to the transmitter filters . In the
following derivation, vectors and matrices are bold. , ,

, and designate transposition and Hermitian for matrix
and vector , respectively. Discrete-time convolution is

indicated as . Complex conjugation for scalars, matrices, and
vectors is indicated as , , and , respectively, while
notations and stand for the element of matrix

and the th element of vector , respectively. To indicate
statistics estimated in a noise-free environment we will use
notation . For example, if
where is noise and is signal of interest, we have

.
In the -domain, the transfer function (1) can be expressed

as where the organization of the
polynomials -transforms of in is

given by

A. Distortionless Reception

To recover the input signals, a linear-input -output filter
with length is

applied to the output of the array. The main objective for
is to achievedistortionless reception. If we define

distortionless receptionmeans that

(2)

where is a identity matrix. The system is
required to be bounded-input bounded-output (BIBO) stable.
The solution (2) is achievable only ideally. Since the input
signal constellations are symmetric, the statistics of the input
signals reflect the same symmetry. Moreover,signal
reconstruction is possible only up to a constant delay, due to
the stationarity of the input process. The recovered signals will

3The same model with some marginal changes applies to the fractional
sampling case as well. We restrict, however, the description of the algorithm
to the symbol-spaced case for the sake of clarity.
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be subject to a phase ambiguity, a delay, and a permutation
ambiguity. The best possible result for practicaldistortionless
receptionby means of a linear filter is

(3)

where is a permutation matrix and

diag

with , integer for . We say that
satisfies thedistortionless receptioncondition if for

it exists a BIBO stabledistortionless receptionfilter . A
system satisfies the distortionless reception condition if
and only if [12], [13]

for all (4)

In the time domain, the linear filter can be written

(5)
where is the filter corresponding to the polynomial

. Neglecting the additive noise terms, the overall
impulse response is characterized by the input/output relation

(6)
where and

.
The desired response ,

, that completely
restores the information signal of theth transmitter up to the
delay , can be expressed as

(7)

The generic th element of the vector is if
we neglect the phase shift and we force the solution not
to permute the inputs . Our task is to design
a deconvolution filter with taps ,

such that approximates in some
sense .

B. Key Assumptions

The fundamental assumptions necessary to develop the
algorithm are as follows.

• AS1: The transformation in (1) represents a stable system.
• AS2: is irreducible and only for

with full rank.

• AS3: The complex sequences are mutually inde-
pendent and are all generated by linear stable systems

with finite impulse responses of
length with ,
for any and no zero on the unit cir-
cle. The cumulants of , independently identically
distributed (i.i.d.) non-Gaussian processes, satisfy

— ,
—cum , only for .
— , for any ,
—cum , only

for .

AssumptionAS2 is required to assure thedistortionless
receptioncondition for . We observe, in fact, thatAS2
is equivalent to stating that thegeneralized Sylvester matrix

of the MIMO system [4], [11] is full column rank (proof
of this fact is in [12], [13]). This implies that adistortionless
reception linear filter exists (i.e., satisfies thedistor-
tionless receptioncondition). Observe that this assumption
appears reasonable in the channel model assumption described
in [21]. AssumptionAS3 generalizes the algorithm to handle
colored input processes [10] and attempts to model the fact
that the source signals in practice do not satisfy the usual
i.i.d. assumption. This is true not only in training but also in
decision-directed mode. For example, in [21], 14 symbols at
the beginning of any slot are dedicated to synchronization and
eventual training. These symbols constitute complexsounding
sequences which satisfy particular autocorrelation properties.
They only approximate the correlation shape of optimalsound-
ing sequences. Moreover, in decision-directed mode, symbols
coming from the digital traffic channel [21] do not satisfy the
ideal i.i.d. assumption. It is, however, extremely important to
emphasize that:

1) the algorithm we propose does not require the impulse
responses to be known;

2) it applies with no change (only marginal modifications
in the derivation are necessary) also to the case when

can be considered i.i.d. processes, that is when
.

III. D ERIVATION OF THE ALGORITHM

The restoration error for theth channel is defined as

(8)

where we have neglected the contribution of the additive
noise. The usual approach is to find the weights for

, such that the mean
squared error (MSE) is minimized. The noise-free MSE in our
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model can be expressed as

(9)

where , and we have
defined in (7) , , , so
that can be written as

. The MSE as expressed in (9) shows that it is possible to
obtain some cumulant-based criteria for deconvolution whose
objective is the minimization of a cost function proportional
to (9). If we organize the weights in a vector

the following theorem can be proved.
Theorem 1: The minimization of the cost function

cum

with respect to , , is
equivalent to the minimization of the noise-free mean squared
error up to a scalar factor if

for any with .
Proof: Using the fact that

noise terms[see (9)], and the noise-rejection prop-
erties of fourth-order cumulants, the cost function
can be expressed as

(10)

where . Now it is evident from
(10) as compared to (9) that, as long as is different
from zero, minimizing with respect to ,

, is equivalent to minimize
. Q.E.D.

Observe that the condition of the Theorem
holds due toAS2 and AS3, while

for any can be
forced in practice using independent automatic gain control
(AGC) circuits.

Theorem 2: The optimum deconvolution filter associated
with the minimum of the cost function satisfies

cum

(11)
and

cum

(12)
for , , ,

.
The proof of this theorem is reported in Appendix A.
Using (11), it is then true that

cum

cum

and we can write the following equations:

(13)

for
, where

cum

cum

where , , , are properly defined by
the region of support of the cumulants to be estimated (see
Appendix B).

Now the equations in (13) can be collected in matrix form as

(14)
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where is a matrix given by

and is a vector given by

The matrix is nonsingular due toAS1, AS2, AS3, and
the fact that . Some remarks regarding this statement
are reported in Appendix C.

IV. A DAPTIVE IMPLEMENTATION

We can consider a recursive solution of the linear system
(14) if we adopt the cumulant estimation procedure reported
in Appendix D. Define as , , and as the
estimation of , , and , respectively, at time instant

. Since the estimation of fourth-order cumulants by sample
statistics generally gives higher error variance than traditional
correlations, the least squares solution of the linear system (14)
may be ill-conditioned as a result. This motivated the choice of
a particularly powerful tool for the solution of ill-conditioned
problems such as total least squares (TLS) [22].

The basic idea in TLS is based on the assumption that
both the matrix and the vector are subject
to errors (perturbations), say and . The
computational problem to solve becomes4

One way of solving problem (15) is by singular value
decomposition (SVD) [7].

• Compute the SVD

where ,
• Determine the largest integersuch that

a) ;
b) for .

4We use the notationkvk = M
i=1 jvij

2 for the 2-norm of the complex

M -vectorv = [v1; � � � ; vM ]T , andkMkF = M
i=1

N
j=1 jmi; j j2 for

the Frobenius norm of theM � N complex matrixM whose generici; j
element ismi; j .

• Partition as where is ,
is , is , and is

.
• The minimum-norm TLS solution is

(15)

This algorithm includes the extensions from [22].5 The re-
quired SVD in the TLS solution makes the solution prohibitive
in terms of computational complexity in real-time applications.

However, SVD can be approximated using a QR factor-
ization followed by a Jacobi-type diagonalization procedure
based on an SVD-update scheme inspired by [18]. Denote

as the th row of . Similarly, is
the th element of .

The approximatedSVD (which is actually a URV decom-
position) at step is , where is an
upper triangular andalmostdiagonal matrix. After appending
a set of new data rows to this factorization, the problem is to
obtain the new decomposition .
This can be performed by means of the following steps.

• .
• .
•

1) incorporate the new cumulants estimates

2) update the QR factors:

3) diagonalize by -step iterative plane rotations:

• .

5The conditions in Step 2 ensure that the algorithm computes the unique
minimum-norm solution and that such a solution exists. Observe also that

k ~wi(n)k = kV22k�2 � 1

and

k[Cy; y(n) c
(i)
a; y(n)]� [Cy; y(n)

�
c
(i)
a; y(n)

�]kF =
KL+1

l=p+1

�2
l
:

Wheneverp = KL, the full TLS solution is obtained. Ifp < KL, the
so-called truncated TLS (T-TLS) solution is obtained.
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Initialization is , and , where
is a identity matrix and is a

matrix whose entries are all zero. At this point partitioning
as , it is possible

to obtain the minimum-norm TLS solution for
using (15). Observe that the -factor of the factorization is
not propagated. In Step 2), the QR factorization update [7]
is performed by means of a sweep of the new input data.
The plane rotations and of Step 3) are unitary
transformations chosen as to annihilate the element
of [18], [20], while leaving it upper triangular.6 The
matrices are permutation matrices in the
plane

Stewart in [20] was the first one to observe that two-sided
orthogonal transformations of this type iteratively applied to
a matrix will reduce the -factor to almost diagonal, and
the diagonal elements will approximate the singular values
[18]. The number of iterations one has to perform to ob-
tain the desired degree of accuracy is indicated as. In
applications where computational efficiency is of concern,
must be as low as one. In extremely fast-fading environments
where tracking capability of the algorithm is top priority,
the value of should be in the range of three to five. In
any case, the higher the value of, the closer the SVD is
approximated at every step. It is important to observe that
several successful refinements of this elegant algorithm were
proposed by the authors of [18]. To detail these refinements
is out of the scope of this work. One of the problems
revealed in [18] is the fact that the matrix as computed
by accumulation of Jacobi rotation matrices gradually loses
orthogonality. Our application of the method, however, never
justified (in terms of performance improvement) the increased
computational complexity subsequent to the orthogonalization
procedure proposed in [18]. One of the reasons is the bursty
nature of the TDMA system: the receiver never processes
more than 500–1000 samples (depending on the sampling
rate), and it appears that the deviation from orthogonality
becomes consistent for larger sample sizes. However, the
algorithm is very effective in tracking slow variations of the
data matrices, and more important, is much more stable than
a full-RLS solution. The value of the scheme is in the fact
that the complexity per time step is an if

6The plane rotations��; n; l and��;n; l of Step 3) have the following
structure

��;n; l =

I��1

cos ��;n; l r�; n; l sin ��;n; l
�r��;n; l sin ��;n; l cos ��;n; l

IKL��

��; n; l =

I��1

cos  �; n; l s�; n; l sin  �; n; l
�s��; n; l sin  �; n; l cos  �; n; l

IKL��

whereIn is an�n identity matrix andr�; n; l, s�; n; l, ��;n; l,  �; n; l are
obtained fromR(n+ 1) (see [7], [9], [18], and [20] for more details).

. Moreover, including orthogonalization of the-
matrix produces an algorithm with high accuracy (similar to
the cyclic Jacobi algorithm for SVD [9]).

V. RESULTS OF EXPERIMENTS

A TDMA system for cellular communications has been
simulated according to [21]. In addition, we present the results
of some lab experiments collected using the Watkins–Johnson
wideband dual-mode (AMPS and IS-136) base-station .
A block diagram of the receiver section of the base-station
is shown in Fig. 1. The tuner module performs a standard
single conversion scheme. The A/D is a high-speed bandpass
sampler, while the conversion at baseband is operated by
digital downconverters (wideband processing). Of particular
importance is the fact that we always compare the proposed
approach (HOS-TLS) with a more traditional QR-RLS (recur-
sive least squares based on QR decomposition [9]) approach,
explicitly a second-order statistics method.

A. Remarks on the Implementation

The simulations in the following section are performed
using a wordlength size of 16 bits, using fixed-point arithmetic.
Digital signal processing processors are commercially avail-
able with these characteristics. The computational complexity
in terms of multiplications, square roots, and reciprocals per
iteration was calculated and compared to the complexity of
the adaptive QR-RLS. The approximate number of instruc-
tions per second using filter lengths equal to and

, including open-loop synchronization, frequency offset
compensation, and convolutional decoding of the bitstream,
is expressed in million of instructions per second (MIPS) per
time-slot (full-rate channel)

QR-RLS MIPS

HOS-TLS MIPS

Square-roots are performed using series approximation, divi-
sions use the analog devices engine. It is evident that the
HOS algorithm proposed here has considerably higher compu-
tational complexity than the traditional QR-RLS scheme, but
it is important to emphasize that the significant improvement
in performance may justify the choice.

B. Computer Simulations Results

In the simulations we assumed a sensor spacing equal.
The antenna has five elements and there are three transmitting
mobiles. One of the transmitters is at array broadside and is the
signal of interest. We assume a two-ray model, and each path
impulse response is modeled as a two-path Rayleigh fading
channel [21]. The arrival angles of the
two paths are spread around with a cluster width of
2 (this model refers to the geometric interpretation also used
in [1]). The interfering signals are generated with the same
parameters but with DOA’s clustered around and

. In Fig. 2, the equivalent baseband discrete-time
model is shown relative to theth mobile transmitter. Delay
spread propagation parameters are summarized in Table I as
they relate to the test-cases reported in the figures. Observe
that the symbol period is 41.2s, and that in the described
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Fig. 1. Block diagram of the receiver.

model s.
The Doppler frequency usually describes the second-order
statistics of channel variations. Doppler frequency is related
through wavelength to the th mobile transmitter velocity

expressed in km/h. The model used in this case is based
on the wide sense stationary uncorrelated scattering (WSSUS)
assumption [3]. The complex weights are generated as filtered
Gaussian processes fully specified by the scattering function.
In particular, each process has a frequency response equal
to the square-root of the Doppler power density spectrum.7

Table II summarizes the Doppler frequency situation as related
to the test cases results shown in the figures. The MSE is
defined as the average of the squared error obtained over

Monte Carlo runs and is given by MSE

. The error obtained at the th run is
where is the delay introduced

by the filters and is the output of the combined filters
obtained at the th run relative to theth transmitter. Observe
that the proposed algorithm uses the known synchronization

7The Doppler spectrum is approximated by rational filtered processes. The
filters are described by their 3-dB bandwidth which is called the normalized
Doppler frequency. The additional assumption is that all channels and complex
weights have the same Doppler spectrum.

sequence while intraining modeand past decisions while in
decision directedmode. The slots are 162 symbols long, and
14 symbols at the beginning of each slot are known at the
receiver.8 The SNR for each discrete-time channel impulse
response is defined as in [2]. In Fig. 3, the traces of the filtering
stage relative to the first user are shown using particular test
slots for SNR dB. Observe that the filter after the first
14 symbols is running in decision-directed mode. The QR-RLS
algorithm on the left is compared with the proposed approach.
The plots represent the traces of the four largest magnitudes
among the taps of the three five-input one-input filters of length

. Fig. 4 shows an experiment where the synchronization
sequences are assumed to be infinitely long (that is, the
receiver has perfect knowledge of the transmitted information).
The plots show the trajectory of the magnitude of the weights
as compared to the optimum Wiener filter (constrained to
have finite length) computed assuming perfect instantaneous
knowledge of . The forgetting factors are
and , respectively, in the plots and SNR dB. Fig. 5
shows the MSE averaged over 100 independent computer
runs versus time-step in symbols when using for

8This corresponds to a frame format similar to the data traffic channel
(DTC) of [21].
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Fig. 2. Discrete-time model of the filtering section (K sensors) relative to theith transmitter. Observe that an adjacent interference-rejection filter is
concatenated with the (square-root) raised-cosine filter which by itself does not meet the IS-136 specification in terms of out-of-band rejection.

TABLE I
CHANNEL PROPAGATION ENVIRONMENTS FOR PERFORMANCE EVALUATION RESULTS: DOA’S AND DELAY

SPREADS OF THEMOBILES. IN ALL THE CASES �
(1)
1; 1 = �

(1)
2; 1 = �

(2)
1; 1 = �

(2)
2; 1 = �

(3)
1; 1 = �

(3)
2; 1 = 0

SNR dB. Bit error rate analysis results are shown in
Fig. 6 (at different speeds) with delays as specified in Table I.
The length of the filters is , , and .
The forgetting factor is . The results are compared
with the QR-RLS. The SNR is the same on each discrete-time
channel; that is, all co-channel interferers are received with
the same average power. A sample size of 10was used to
estimate an error probability of 10.

C. Hardware Implementation Results

A simpler and indeed more realistic scenario ,
was studied using data collected from the DSP re-

ceiver section of , the dual-mode wideband base station
implemented at Watkins–Johnson. The hardware test setup is
depicted in Fig. 7. A hardware multipath fading simulator is
connected to the two antenna ports of the base station. The
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Fig. 3. Trajectories of the magnitude of the filter weights corresponding to the first mobile for different speeds. The length of the filter isL = 7. For
propagation parameters, see Tables I and II.

TABLE II
CHANNEL PROPAGATION ENVIRONMENTS FOR PERFORMANCE

EVALUATION RESULTS: VELOCITY OF THE MOBILES

IS-136 signal generator simulates transmission of DTC frames
coming from three different mobiles. Additive Gaussian noise
is injected on both the diversity channels. Observe that the DSP

modem receives a sampling rate of 80 KHz. The wordlength
used is 16 and the algorithm has been implemented using
fixed-point arithmetic.9 A polyphase raised-cosine filter con-
catenated with an adjacent interference rejection filter trans-
forms the rate to kHz, which is the rate at which
the open-loop synchronizer works. Then the two-channel filter
works at -rate. The results of extensive BER measurements
are summarized in Fig. 8. The QR-RLS algorithm opposes
unsatisfactory performance in many situations. It is important
to mention, however, that substantial improvement can be

9A detailed analysis of the dynamic range required not to degrade the
performance of the algorithm as opposed to the floating point representation
was carried out although the description of such analysis is beyond the scope
of this paper.
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Fig. 4. An experiment that shows the tracking capability of the algorithm. The dashed trace is the optimum Wiener filter computed assuming perfect
knowledge of the discrete-time of the channel impulse response. The length of the filter isL = 3. For propagation parameters, see Tables I and II.

achieved using QR-based decision-feedback schemes, and sim-
ilar extensions of the cumulant-based algorithm are possible.

VI. CONCLUSIONS

We have studied a new solution to the array processing
problem in a cellular TDMA base station employing antenna
arrays. The method is robust and able to track fast channel vari-
ations caused by moving transmitters. Although the algorithm
exploits higher order statistics which usually are employed
in blind algorithms with relatively low convergence speed,
the knowledge of the training/synchronization sequences al-
lowed a formulation of the problem as a known-input iden-
tification/deconvolution problem and gave the possibility of
designing a method with fast convergence. The MSE of
traditional second-order statistics algorithms has been shown
to be proportional to a cost function involving cumulants of
the restoration error. From this basic observation we derived
a set of linear equations relating the separating filters to
input–output fourth-order cumulants. The well-known high
variance exhibited by short data record estimates of cumulants
is mitigated by the use in the adaptive implementation of a
recursive total least squares approach. Results for the IS-136
(the U.S. standard for digital cellular communications) have
been shown as they compare with more traditional algorithms
based on second-order statistics.

APPENDIX A
PROOF OF THEOREM 2

Suppose are the filter weights organized into
satisfying (11) and (12) and minimizing , while

organized into are the weights of another arbitrary

filter. Define and observe
that it is possible to express as

(16)

where , , , ,
. Substituting (16) into the expression

for and using (11) and (12), it is possible to write

cum

(17)
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(a)

(b)

Fig. 5. Stability experiments (a) for the two algorithms: QR-RLS and HOS-TLS at 100 km/h. The slot is 750 symbols (for testing purposes only). (b)
Averaged mean squared error (100 Monte Carlo runs). For propagation parameters, see Tables I and II.

where

Of course, (17) is minimized when . Q.E.D.

APPENDIX B
ON THE CHOICE OF , , ,

Assume are FIR of length and
observe that

cum

cum

is different from zero only for

so that and can be chosen as
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Fig. 6. Bit error rate of the first mobile transmitter in a three-mobile environment. For propagation parameters, see Tables I and II. Also, results for
the no-fading case are shown.

Fig. 7. Hardware test setup for lab experiments.

Remember now that (see AS3) is of length
and observe that

cum

cum

is different from zero only for ,
, and . This means also that

, ,
,

and , that is,
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Fig. 8. Bit error rate for the hardware experiments. For propagation parameters, see Tables I and II. Observe that fixed-point effects (16 bits) are deteriorating
the performance with respect to the results shown in Fig. 6.

Hence and can be chosen as

APPENDIX C
ON THE RANK OF THE MATRIX

Define the matrix

...
...

...

elsewhere

the matrix

...
...

...

elsewhere

and the matrix

...
...

...

elsewhere

Now observe that

cum

(18)
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The last equality states that

(19)

The three following facts:

• is full rank [10], [12], [13], [15] due toAS2;
• is full rank due toAS3;
• ;

imply that is a full (column) rank matrix and that
has rank equal to . Since , the full rank property of

extends to due toAS1 and (19).

APPENDIX D
CUMULANTS ESTIMATION

Adaptive estimation of cumulants can be implemented by
means of the method also used in [8]. We define

and the estimates of the respective moments based on sam-
ple statistics as , ,

, and using samples. Assuming
at iteration 0 we have available for

, at iteration we can update
from as follows:

and , from as
follows:

where and ,
, .

Similarly, for the second-order moments, we can write

(20)

where and
.

Evidently we can obtain the cumulants estimation at point
as

and an obvious organization of these quantities into the ma-
trices of the system (14) gives the estimates and

.
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